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AN APPROXIMATE SOLUTION OF ADDITIVE-DRAG COEFFICIENT
AND MASS-FLOW RATIO FOR INLETS UTILIZING RIGHT
CIRCULAR CONES AT ZERO ANGLE OF ATTACK

By Vincent R. Mascitti
Langley Research Center

SUMMARY

This paper presents an approximate solution of additive-drag coefficient and mass-
flow ratio for inlets utilizing right circular cones at zero angle of attack. The results
are in good agreement with the exact solution, especially at high Mach numbers and large
cone half-angles. The present method uses the incompressible approximation of the
conical flow field. This conical-flow-field approximation facilitates analytic integration
of the pressures acting on the entering streamline, In addition, the flow-field properties
obtained by the approximation are in good agreement with the results of the exact solu-
tion and other approximate solutions. The largest deviation between the exact solution
and the present solution of additive~-drag coefficient was ACD,a = 0.039.

INTRODUCTION

The calculation of additive-~drag coefficient and mass-flow ratio for axisymmetric
inlets is complex and time-consuming., The exact solution may be obtained by numerical
integration of the pressures acting along the entering streamline. This procedure was
used to obtain the results presented in reference 1. Using graphical or tabulated data
for automated computation of installed performance of air-breathing engines requires an
elaborate system of fitted curves over a wide range of conditions. This approach may
limit computer storage, generality, and, most important, accuracy.

This paper presents an approximate method by which additive-drag coefficient and
mass-flow ratio can be calculated directly. Direct calculation has been accomplished by
using an approximate solution to represent the conical flow field. Use of this approxima-
tion permits the force on the curved streamline to be determined by analytic integration,
The approximate expressions for additive-drag coefficient and mass-flow ratio for inlets
utilizing right circular cones at zero angle of attack have been compared with the exact
solution of reference 1.
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SYMBOLS
nondimensional speed of sound, 5,/ V;
speed of sound
cross-sectional area

D
additive-drag coefficient, —2

aA7,
pressure coefficient
additive drag
Mach number, V/a
pressure
dynamic pressure, 72-1pr002

nondimensional velocity along conical ray line in spherical coordinate
system, ﬁ/ v;

nondimensional velocity normal to conical ray line in spherical coordinate
system, \'r/ V]

velocity components, dimensional

nondimensional resultant velocity at any rav line, V/ Vl
resultant velocity, dimensional

limiting velocity due to adiabatic expansion into a vacuum
mass flow

mass-flow ratio

ratio of specific heat at constant pressure to specific heat at constant volume



0 conical ray angle measured from cone axis

Subscripts:

S cone surface

L location of inlet lip

t stagnation conditions

w conditions back of shock wave
o free-~-stream condition

METHOD OF SOLUTION

Conical-Flow Approximation

The purpose of this section is to derive a conical-flow-field approximation which
permits the analytic integration of the pressures acting on the entering streamline. Also,
the conical-flow-field approximation should provide good agreement with the exact solu-
tion over a wide range of conditions.

Two conical-flow approximations which satisfy the latter condition are presented
in references 2 and 3. The method of reference 2 offers little advantage over the exact
solution because it requires an iterative or semigraphical solution. In contrast, the
method of reference 3 is a closed-form solution. Unfortunately, attempts to integrate
the pressures acting on the entering streamline failed.

A conical-flow approximation has been found which satisfies the two requirements
stated above. The differential equation which corresponds to this solution was first
recognized in reference 4 as the incompressible solution to the supersonic conical flow
field. This solution is more appropriately referred to as a constant-density solution as
pointed out in reference 5. In reference 6, the solution to this equation has been applied
to the hypersonic speed regime where the constant-density approximation is valid., How-
ever, it is not widely recognized that this solution gives good results even at the lower
Mach numbers. The "Results and Discussion' section indicates that the results of the
constant-density solution are comparable to those obtained by the approximation of
reference 3.

The derivations of the basic equations for the conical-flow problem are presented
in reference 4 and, therefore, will not be repeated herein. The second-order, nonlinear



differential equation representing the conical flow field in the spherical coordinate sys-
tem (fig. 1) is

(ilz_u+u___a2(u+vcot 6) 1)
de2 v2 - a2
where
V = g}l
de
and

a2=7;1(1_u2_vz)

In these equations, the velocities had been nondimensionalized by dividing them by the
limiting velocity attainable by adiabatic expansion into a vacuum. Rearranging equa-
tion (1) gives

d2u _u+veotd

—_—t ] —

do2 vy
22

The equation is nonlinear because of the quantity vz/az. The assumption of this paper

2
is that 2—2— <<1 (constant-density solution).

a

The differential equation reduces to

—+cot 6 —=+2u=0 (2)
do

Equation (2) is linear and has as one solution u = cos §. With this solution, the second
solution can be found by quadratures, as follows:

u = cos e{cl[sec 6 + log, (tan g)] +'C2} (3)

where C; and Cg are constants of integration to be evaluated by the boundary
conditions.,

One boundary condition is at the conical surface when 6 = 65 and is as follows:

vV = -—0 =0
This condition results in the relation
cos 6 0
Cg =Cq 5 S . loge(tan ;-) (4)
sin“fg



Substituting equation (4) into equation (3) gives

) COS es QS
u = Cy cos f|sec 6 + loge<tan §> + - log(tan 5 (5)
sinzes

The second boundary condition is behind the shock wave when 6 = 6y and is as
follows: '

Uy, = Voo COS By
From reference 7,

v.2- 1
14 —2 1
Y - 1 MOOZ
Therefore,
Uy = 21 T ©o8 Ow (6)
1+
RSV
Substituting equation (6) into equation (5) gives
| 1
1.2 1
o0
Cy= (7)
sec O, + log (tan 9W> + cos Os log <tan 65)
v € 2 SinzeS € 2
Substituting equation (7) into equation (5) gives
6
cos 6 tan 3
u=XK/1 +cos 0 g 4 log 2 (8)
sinZg € Os
S t el
an
2
where
[ 1
2 1
1 -1
\/ Ty-1, 2
K = 0
Oy
cos Og tan =
sec Oy + + log,
sin2 6 tan 28
2



In addition,

0
u . cos Og tan 2
v=@=K cot 8 - sin 6§ +loge———@—. (9)
sin4fg tan -5
2
and
tan E\P
cos 0 an o
Vv=l2+v2=K csc2p + S+10ge 2 (10)
sinzeS b5

Equations (8), (9), and (10) are the expressions for the flow velocities in terms of the cone
half-angle, shock wave angle, free-stream Mach number, and ray angle.

It should be pointed out that the Rankine-Hugoniot conditions at the shock have not
been satisfied. The second boundary condition merely specifies that the tangential veloc-
ity component is constant across the shock. The reason for this approach is to provide
two methods for determining the shock wave angle:

(1) To impose the Rankine~Hugoniot condition and develop an expression for shock
wave angle as a function of free-stream Mach number and cone half-angle

(2) To use the exact shock wave angle in tabular form to provide more precise
results

With equations (8), (9), and (10) in their present form, either method may be used.

The Rankine-Hugoniot equations can be expressed as:

2
- 1 uw - 1
tan 6, = £ —— 11
D by = 2T e (11)
Equations (8) and (9) evaluated at the shock wave become
- 1
Uy = 5 cos By (12)
14— —
Y - 1 Mooz



1 o\ )
_ cos fg an —-
cot Oy - sin Oyl — 5+ log -
’ 1 . Sin 95 tan s
Vw = 1.2 1 7] (13)
— e w
v -1y 2 cos 0 tan —
sec Oy + + log e
sin“fg tan £
" 2 ),

Substituting equations (12) and (13) into equation (11) and reducing gives
—1———sin29W-7+1 1 (14)
MOOZ 2 6y

cos Og ) tan 5
1+ cos dy 2 + log, —9;
5 tan '2—

Unfortunately, the shock angle cannot be calculated directly when cone half-angle
and free-stream Mach number are specified. Since an iteration scheme is required to
solve equation (12) when 65 and M, are specified, using the solution of the approxi-
mate shock angle offers little advantage over using a tabulation of the exact shock angle,

Additive-Drag Coefficient and Mass-Flow Ratio

By using the expressions for the velocity components in the conical flow field, the
equations for additive-drag coefficient and mass-flow ratio can be derived. The detailed
steps of the derivation are presented in the appendix. The resulting equation for the
additive-drag coefficient is

— 0
-1 tan —
K Prw v - v 2
Cpo=Cp~—2Cp y - 3! _ log (15)
D,a p w, P,W (& - l)Mooz Peoo sin 6 e tan %V_V.
where
-
2 Pt w( 2)7'1
Cp=—5—=1 -V -1
P M P



and, from reference 7,

Y
Pt w I y + 1 :}-’%—1- (v + l)Moozsinzew[(y - 1)M°02 + 2] v
Poo —LZVMOOZSiHZQW -y - 1)] 2[(7/ - 1)M°ozsin29W +2]
The resulting equation for mass-flow ratio is
1
w _ v Sin 9W<1 - Vz)v/-l (16)
Woo  Vy s @ \; .y 2

From equations (15) and (16), the two obvious end results are satisfied:

When 0= 6,

W -
W =1 CD,a"O
When 0 = Gs
_ W -
v=0 —_ =0 CD,a"Cp,S

RESULTS AND DISCUSSION

Conical~Flow Approximation

The purpose of this section is to provide some confidence in the use of the constant-
density conical-flow solution over the Mach number range. Evidenced by reference 6,
the constant-density solution has been successfully applied at high Mach numbers. How-
ever, no comparison of the results of the approximate methods with those of the exact
solution was made at lower Mach numbers. Figure 2 presents the variation of the pres-
sure coefficient with conical ray angle for four cones at zero angle of attack and at a free-
stream Mach number of 2. The solid line corresponds to the exact solution of refer-
ence 8, The short dashed line corresponds to the approximate solution using equation (10)
and the exact value of shock angle. The long dashed line corresponds to the approximate
solution of reference 3. The results of the present solution agree reasonably well with
the results of the exact solution and those obtained by the approximation of reference 3,

Additive-Drag Coefficient and Mass-Flow Ratio

Additive-drag coefficient and mass-flow ratio, equations (15) and (16), have been
computed for an inlet cowl placed in the conical flow field at zero angle of attack. The

8



results are presented for cone half-angles of 5°, 10°, 20°, and 30° in figures 3, 4, 5,
and 6, respectively. Additive-drag coefficient and mass-flow ratio are plotted against
ray angle for three Mach numbers: sonic flow on the cone surface, Mw = 2, and

My = 6. The solid lines correspond to the exact solution obtained by numerical integra-
tion in reference 1. The dashed lines were computed from the approximate expres-
sions (15) and (16). Additive-drag coefficient is in good agreement with the exact solu-
tion, especially at the higher Mach numbers and cone half-angles, The fact that the
agreement in mass-~flow ratio is very good over the full range of conditions indicates
that the conical-flow approximation provides a good approximation of the entering
streamline,

Figures 3 to 6 show that the maximum deviation in additive-~drag coefficient occurs
when the cowl lip is placed on the cone surface. Figure 7 shows the maximum deviation
in additive-drag coefficient between the exact and approximate solutions. The difference
between the exact and approximate additive-drag coefficient is plotted against Mach num-
ber for four cone half-angles. The largest deviation shown is ACp 5 = 0.039 at a Mach
number of 1,12 for 64 = 10°, The importance of this error in terms of inlet and aircraft
performance will vary with aircraft configuration and is beyond the scope of this paper.

CONCLUSION

An approximate method for calculating additive~drag coefficient and mass-flow
ratio of inlets utilizing right circular cones at zero angle of attack has been presented.
The solution uses the constant-density conical-flow-field equations. These equations
are shown to provide good agreement with the exact cone solution over a wide range of
variables. Results of the approximate expressions for additive-drag coefficient and
mass-flow ratio are in good agreement with the results of the exact solution and other
approximate solutions. The largest deviation between the exact solution and the present
solution of additive-drag coefficient was AcD,a = 0.039.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 2, 1969,



APPENDIX

DERIVATION OF EQUATIONS FOR ADDITIVE~-DRAG COEFFICIENT
AND MASS-FLOW RATIO

Additive drag is defined as
0
Da={ @-poa (A1)
O
The additive-drag coefficient is given by

CDa= (A2)

Substituting equivalent expressions for the parameters into equation (A2) and rearranging

yields
6
2 S‘ p
C = (——- )dA (A3)
D,a '}’MoozAL Ow Peo
Because
b __p pt,w
P, pt,w Py
and
.
-1
5= (1 - v’
t,w
ﬁ) o Y
2 th‘ ( 2)’}’-1 .
C = 2 1-V dA - (A7 - A (A4)
D,a mezALpr O ( L w)

The mass-flow ratio captured by a cowl lip at position L is defined as follows:

1

(1-v2)" 1y

W
Weo C sin @

10



APPENDIX — Continued

where

A

-1
- sin Oy

From reference 1,
‘ A= T Ab
T (A5)
Substituting the equivalent expression for w /W, into equation (A5) yields
A= 7C sin 6
y-1
(- v
Then
dA:WCVCOSGdQ—SinedV_I_ 2 sin 0V dV (A6)
A Y
-1 -1
-v12 p-p-vdTy
Applying the expression for v from equation (9) gives
v cos 6 df - sin 6 dv = 2K do (A7)
sin 6
Applying the expressions for v and V from equations (9) and (10) gives

2sin VAV _ 2K

= - do
v sin 6

(A8)
Substituting the equivalent expressions (A6), (A7), and (A8) into equation (A4) gives

2

6
p 2 |
Cp = LW o f [‘zK@ v2) ek |
’ 2 P :
YM,, AL 0 O

v2sin § (¥ - 1)sin 9_] <AL B AW)

(A9)

The procedure for solving the first integral is as follows
ro

P 2
9 9 cos Oy tan
1 - K% sc“0 - K +10ge

g" ok (1 - v2)

2.
9W vesin 0

sin? fg

_§
2
do =
cos 0 tan —
KZ cosze - 8 + loge
sin“@ sin2 g

2K csc 9 de (A10)

_

tan 5
Ow

11



APPENDIX - Continued

If o
tan =
cos 60
R=K cos 0 _ S+10ge-—-——
sin2p  |sin2 Og tan gg_
2
then
dR = -2K csc36 do
Therefore,
0 3 0 6
2K cscv0 do drR _ l_l
2~ 2 R
cos 0 tan & 6y R O
9 ) cos 6 05 Ug
K - + loge 5
sin20 sin2 Og tan -8
Ow 2
_ 1 6
6
tan =
KO8 6 _ cos Og og 2
sin26 sin29S € tangﬁ
2 Ow
(A11)
If
2
cos 6 tan Z
S = -K2csclp - K4 =78 log_|———
sin GS tan _ezﬁ ]
then
6
cos 0 tan >
ds = 2K2 cos 6 S+10ge—-792-— csc 0 do
sin2¢ sinzeS tan -2
2
Therefore,
S‘SdR=SR—S‘RdS
0 —216
9 Fcos bg tan bl
csco + + loge
Sin29S tan bs 0
= -K = 2 = _51 2K csc 6 do (A12)
v 6
cos § |COs Og tan 2 w
"1 3 + loge 5
sin26 sin“0g tan —=
L 2/ 4|0y

12



APPENDIX - Continued

Substituting equations (A11) and (A12) into equation (A10) gives the following equa-

tion for the first integral:

Je 2K(1 - v2) 4, _ 1

2 .
By, Vsin 6 tan £
v K/)cos 6 _[cos s log a9
sin2¢ sinzes © tan ﬂf‘i
2
—0
6
tan =
cos 0
csc2g + S 4+ loge/ 92
sinzes wan S
2
- K = T
cos2g | cos Og 1 tan 5
- - Og ——
sin2¢ | sin20g “\tan &8
L 2 Jow

~ 6
-5 2K csc 0 do
O

_(1-v)sine [

0
-‘S 2K csc 6 d6
A\

Ow VOw

Substituting equation (A13) into equation (A9) gives

9\ .
3 2 Pt w (1 - Vz)sin 6 ( - Vy >s1n Ow
= aC -
M 2AL ., v Vo
(> e}

CD,a

6
2Ky
- 2By 0dol - (Ay - A

v -1 QWCSC (L w)

(A13)

13



APPENDIX — Concluded

Solving the second integral and rearranging gives

2\ . tan &
Cp 4 = 2 pt,w_qg:_(l -Vz)siné)_ (1 -Vw)sm fw 2Ky log Ay 142w
’a - - - Av
yM_ 2 | Po AL v V- y=-1"7¢€ tan Jw AL
2
Recognizing that
Aw_w
A, Wy
and
1
rc _ v - v2)7!
Az, sin 6
p X 2
2 t.w o\r-1  w 2\r-1
C = —2 1 -1 -
1 tan &
- an =
_21<;yv(1-vf2)”110g 2\,
y -1 sin 6 e O W
tan —
2
Since
p vt
Cp=—2L¥ (1 - vt oy
then
1 0
y-1 tan =
sk Prwvl - v2) 9
Cpa=Cp-oeCpy- 2 : og (A14)
AP W TR M, 2 P sin g “\tan 2

14
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